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A full approximation scheme (FAS), nonlinear multigrid algorithm is considered for the 
solution of the incompressible steady-state Navier-Stokes and continuity equations in a 
rotating cylindrical-polar coordinate system; the specific problem being that of laminar 
source-sink flow between corotating discs. The pressure correction iteration is analysed as a 
smoother of the momentum and continuity equations, and an extended pressure correction 
scheme, modified for this problem, is used as the smoother for the multigrid algorithm. Also 
used are sequences of nonuniform, staggered grids for the primitive variables. Results are 
given for rotational Reynolds numbers in the range 2.5 x 103-2. 5 x lo4 and the performance 
of the nonlinear multigrid algorithm is compared with that of the extended pressure correction 
method and also to the performance of the same pressure correction method incorporating a 
multigrid algorithm as a linear solver. 3: 1988 Academic Press, Inc. 

1. INTRODUCTION 

In this paper we consider the solution of a simplified version of a problem in gas 
turbine design, the flow of air between rotating discs, by a nonlinear multigrid 
algorithm. The problem considered is that of laminar source-sink flow between 
corotating discs as in Chew [3] and Lonsdale and Walsh [7], where the solution 
procedure was a one-grid pressure correction. method with various modifications to 
improve on the convergence rate. 

A cylindrical-polar coordinate system (r, 9, z) rotating at angular velocity Q (in 
the S-direction) is used with variables and parameters as follows: 

radial velocity - u 
tangential velocity - u 

axial velocity - w 
pressure -- p 
density - p, assumed constant 

reduced pressure - p’ = p - 4 pG2r2 

*Current address: School of Studies in Mathematical Sciences, University of Bradford, Bradford, 

West Yorkshire, BD7 IDP, United Kingdom 

177 
0021-9991/88 $3.00 

Copyright 0 1988 by Academic Press, Inc. 
All rights of reproduction in any lorm mewed. 



178 GUY LONSDALE 

dynamic viscosity - p, assumed constant 
source flow rate - Q 

radial position of source - a 
radial position of sink - h 

distance between the discs - s. 

The incompressible steady-state Navier-Stokes and continuity equations are then: 

f&ru2)+-$pU”)= -z+ ,[;f(r~)+~-;]+2pRv+p;, (I) 
;&wuv)+-$mv)=p ‘2 [rar(r~)+$-~]-p~-2pRu, (2) 

~~(pwv)+~(pw2)= -z+ P[f$(rf$)+$lF (3) 

Boundary conditions for velicities are taken as follows: 

Q 
U=2nrs' v = 0, w = 0 at r = a, b; 

u=v=w=o at z = 0. s. 

In the relaxation scheme used we require conditions only for a correction to the 
pressure, pp, not for the pressure itself (see Section 3); these conditions are taken to 
be: 

aPP z=O at r = a, 6; 

aPP --$=O at z = 0, s. 

The geometry and fluid properties used for numerical tests are as follows: 

source radius, a = 0.019m; 

sink radius, b = 0.19m; 

distance between the discs, s = 0.0507m; 

constant dynamic vicosity, p = 1.78 x 10e5kg/ms; 

constant density, p = 1.225kg/m3; 

source flow rate, Q = 2.761 x 10e4m3/s. 
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In order to solve the differential equations (l)-(4) numerically we first discretise 
the equations-covering the region by rectangular, possibly nonuniform, grids and 
representing the solution by values at the grid points. Note, however, that the 
velocities and pressure need not be calculated on coincident grids; the locations of 
velocities and pressure may be shifted or “staggered.” In fact we use staggered grids 
throughout, with the velocities at points halfway between pressure lines as in 
Lonsdale and Walsh [7]. The use of staggered grids is discussed in detail in [9]. 

The finite difference equations may be found by integration over control areas 
(Varga [lS]), and we use a further approximation in the assumption of linear 
profiles along control area boundaries. 

For high Reynolds number flows it is necessary to use some form of upwind 
differencing for the convective terms [2,9]. In this paper, the finite difference 
replacement of the momentum equations (1 )-( 3) includes the form of upwinding 
used by Patankar and Spalding [lo] and discussed in detail in [9], 

Discretisation of the differential equation in this way produces a nonlinear, 
coupled system of algebraic equations for the velocities and pressure at their respec- 
tive grid points. 

2. MULTIGRID SOLUTION OF A SYSTEM OF NONLINEAR ALGEBRAIC EQUATIONS 

The discretization of the Navier-Stokes and continuity equations leads to a 
nonlinear algebraic system of equations, as discussed in Section 1, so we first 
consider the major features of a multigrid solution of such a system. For a complete 
description of multigrid ideas and algorithms see Stuben and Trottenberg [ 111 or 
Brandt [ 11. 

Let the nonlinear system be 

N/,(x,) = fh (&Jr (5) 

where 

Rh is the line, possibly staggered, grid; 
G(R,) is the space of vectors of grid functions on R,, ; 

xh, fh E G(R,,); 

we assume that a solution of (5) exists, so that 

Nh has an inverse. 

To develop a multigrid algorithm for this system we use the full approximation 
scheme (FAS): 

If xi is our current approximation to the solution xh, then the defect equation on 
the fine grid is 

Nh(xX + yi) - Nh(Xi) = di, (6) 
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where 

di = f,, - Nh(xi) (7) 

and the solution is given by x,,=xt,+y 4. This gives us the coarse grid equation 

NH(&) = NdxL) + di,, (8) 

where z~ = xj, + f/H, dim(G(R,)) 6 dim(G(R,,)) and we assume N;’ exists. 
In order to represent the defect equation (6) on the coarser grid it must first be 

smoothed by some relaxation process. As the system (5) is nonlinear the relaxation 
process will involve some linearisation; in fact, this linearisation need only be local 
to a point or line depending on the relaxation process used (see Section 3). The 
linearisation occurring in the relaxation process is the an/y linearisation required in 
the multigrid solution of Eq. (5). The defect (7) is calculated using the full nonlinear 
operator and we maintain a nonlinear system of equations on all grids. We can thus 
hope for fast, efficient convergence provided we can obtain a suitable relaxation 
method. 

3. RELAXATION METHODS FOR THE NAVIER-STOKES AND CONTINUITY EQUATIONS 

In this section we will discuss possibilities for the relaxation of the discretised 
Navier-Stokes and continuity equations. The methods we consider involve treating 
the momentum equations separately from the continuity equation so that the 
relaxation process is made up of two steps. 

The handling of the momentum equations is quite standard, they are uncoupled 
via a linearisation which replaces products of variables with the product of one 
“old” iterate with one “new” iterate leading to live-point difference equations for the 
velocities. The momentum equations can thus be relaxed successively using either 
point or line relaxation methods such as Gauss-Seidel (in fact, we use the alter- 
nating line Gauss-Seidel algorithm). We note that this linearisation is not done 
globally before the relaxation sweeps for the momentum equations, but locally as 
required by the relaxation process. 

The main problem in designing a relaxation method for the whole system lies in 
the handling of the continuity equation. Brandt and Dinar [2] introduce the idea 
of a “distributive relaxation,” where changes are made to several variables in order 
to smooth the defect of an equation. The crucial factor in using a distributive 
relaxation to smooth the defect of the continuity equation is that changes made to 
the variables in order to satisfy continuity must not affect the smoothness already 
present in the momentum equations (in the sense of the defects of the linearised 
momentum equations). 

We will first consider the distributive scheme proposed by Brandt and Dinar [2] 
and generalised by Fuchs and Zhao [4], for the Navier-Stokes equations in a car- 
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tesian coordinate system. This is most easily described in terms of the differential 
equations in the linearised form 

Qku+Vp=F 

v.u=o 

where Q” = puk .V - pV2, uk being our last iterate. 
Let u* be the velocities produced by smoothing the momentum equations with 

pressure pk, giving a defect d*: 

d* = F - Qku* -VP”. 

The distributive relaxation aims to produce new iterates uk+ ’ and pk+ ’ given by 
uk+‘=u*+du, pk+L k p +pp, such that the continuity equation is satisfied and 
the momentum defect remains unchanged, i.e., 

dk+I=F_QkUk+l_VPk+I=d* 9 (9) 

v.uk+I=o. (10) 

The scheme used by Fuchs and Zhao [4] uses changes given by the following: 

6u = v)f, PP = - Qkxs 

where x is given by the solution of 

v2x = -v. u*. 

The distributive Gauss-Seidel scheme used by Brandt and Dinar [2] is a particular 
case of the above where x is restricted to being nonvanishing only at a point. The 
changes (11) satisfy Eqs. (9) and (10) under the assumption that Qk, V commute. 

For the simplified case of the Stokes equation, with vanishing Reynolds number, 
Q” is just given by -V2 and the change to the defects of the momentum equations 
is given by 

(V2-W.)Vx 

which is identically zero. However, we must remember that in practice we will be 
dealing with the discretised equations. Let us consider the specific example of the 
scheme used by Brandt and Dinar [2], with x restricted to being nonzero at a 
point, for the case of the Stokes equations in a cylindrical-polar coordinate system 
with a uniform grid. It can be shown that the changes given by the discrete forms of 
Eq. (11) only maintain the defects of the momentum equations in the limit as the 
mesh size goes to zero (Lonsdale [8]). We note here that in a Cartesian coordinate 
system the changes made by the discrete forms of (11) maintain the momentum 
defects exactly. 
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For a nonvanishing Reynolds number the commutativity of Qk, V is clearly not 
true in general, so that the momentum defects are only approximately maintained 
by the changes (11). 

We now propose an alternative smoother for the continuity equation, the exten- 
ded pressure correction scheme of Van Doormaal and Raithby [ 121 which gave the 
best performance of several pressure correction schemes for the rotating discs 
problem (Lonsdale and Walsh [ 73). 

In order to describe Van Doormaal and Raithby’s scheme we will consider the 
discretised, linearised equations 

Q;u, = -V,P, -t F,, (12) 

v.ph=Q, (13) 

where Qi, V,,, V .* are discrete forms of the operators Qk, V, V. and II,,, p,, 
represents values of the variables at grid points. 

Let Qt = D,, + Q,,, where D, is the diagonal of the matrix Qt and define ah by 

a,, = diag(2,) with 2, = 1 Gi/ 

(t, being the (i,j)Ih element of the matrix Q,). 
The basic idea of all the pressure correction schemes is that a correction to 

pressure is calculated which, together with approximate velocity-pressure gradient 
relations, aims to satisfy both the continuity and momentum equations; that is to 
say, we make changes to satisfy the continuity equation while aiming to leave the 
momentum defects unchanged-the motivation for a distributive relaxation. 

Van Doormaal and Raithby’s scheme is given by uf + t = u*,, + &I,, 
p;+‘=p;+pph: 

&I,,= -(D,,+&-’ V,pp,, (14) 

where pph is given by the solution of the pressure correction equation 

V.h(Dh+Bh)-‘Vhpph=V.h~h*. (15) 

The changes given by (14) and (15) satisfy the continuity equation (13) while giving 
changes to the defects of the momentum equations given by 

d::+‘=df+(Q;(D,,+&-I-I)V,,pp,,, 

where Z is the identity matrix. 
Thus Van Doormaal and Raithby’s extended pressure correction scheme satisfies 

continuity while approximately maintaining the momentum defects, just as they are 
only approximately maintained by the scheme given by the changes (11). 

There are, however, advantages in using the pressure correction scheme, as 
follows: 
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(a) We can take account of situations, like the rotating discs problem with a 
rotating frame of reference, when the body forces F include terms dependent on the 
variables (in the rotating discs problem these may be the dominant terms in the 
equations, Lonsdale and Walsh [7]) by including the terms in our approximation 
to the inverse of the discrete form of the differential operator for each equation. The 
form of the finite difference equations including the handling of the body forces is 
given in [3]. 

(b) The use of a nonuniform grid further violates the commutativity of Qt 
and V, required by the discrete form of the scheme given by Eqs. (11). This is true 
even for the Stokes equaton in a Cartesian coordinate system, just as the 
involvement of the radial variable in a cylindrical-polar coordinate system prevents 
the exact maintenance of the momentum defects (Lonsdale [8]). In the pressure 
correction scheme we approximate the inverse of Qi at a point and the nonuniform 
gird poses no extra problems. 

Our proposed smoother for the Navier-Stokes and continuity equations thus 
consists of: 

(i) uncoupling and smoothing the momentum equations; 
(ii) satisfying continuity via the extended pressure correction scheme of Van 

Doormaal and Raithby [ 121 which involves the solution of the pressure-correction 
equations ( 15 ). 

4. MULTZRID SCHEME FOR THE SOLUTION OF THE ROTATING DISCS PROBLEM 

We now discuss the multigrid algorithm used, giving details of the various 
components. 

The algorithm employs sequences of nonuniform staggered grids; the finest being 
defined by positioning the pressure lines to correspond with the zeros of the 
relevant shifted Chebyshev polynomial; clustering the grid points near the boun- 
daries allows us to maintain accuracy without using large numbers of grid points, 
which would be required by a uniform grid, in order to deal with the boundary 
layers which form both on the discs and at the source and sink. The radial and 
axial velocity lines are positioned halfway between pressure lines. The grid coarsen- 
ing was done by taking every other fine grid pressure lines as a coarse grid pressure 
line, with the coarse grid radial and axial velocity lines halfway between coarse grid 
pressure lines. The aim of maintaining coarse grid lines adjacent to the boundaries 
is to avoid the necessity for special handling of coarse grid boundary conditions. 

A FAS algorithm was used in a form where the stage at which transfer occurs 
between grids is fixed in advance (referred to as a cycling algorithm [ 11). This type 
of algorithm is characterised by the following four parameters: 

vb, the number of relaxation sweeps before coarse grid correction; 
v,, the number of relaxation sweeps after coarse grid correction; 
v,, the number of relaxation sweeps on the coarsest grid; 
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y, the number of iterations of the multigrid algorithm for the coarse grid 
equation (y = 1 gives V-cycles, y = 2 gives W-cycles, see [ 1, 11 I). 

Detailed descriptions of various multigrid algorithms can be found in Stiiben and 
Trottenberg [ 111. 

At this point we will introduce some notation which will be convenient for later 
use. We will use the multigrid algorithm in two modes: MG and FMG. The FMG 
mode is a method of producing good initial line grid approximations by inter- 
polation of a coarser grid solution produced by a similar FMG process; whereas 
the MG mode uses a guessed solution as the initial line grid approximation, 

Let R,, R,, . . . . R, be the sequence of grids, with R, the finest grid; denote by 
MG, one multigrid iteration starting on Ri. Then we denote by 

FMG(is, n,,) (16) 

the FMG mode of the multigrid algorithm in the following form 

nr, x MG,, I= is, is - 1, . . . . 2 

followed by MG,; i.e., n, multigrid iterations on grids R,, R,- ,, . . . . RZ, followed 
by one multigrid iteration on the finest grid. Interpolation of the solution on grid R, 
is used as the initial approximation on the grid R,- 1 (I= is, is - 1, . . . . 2). If is = m we 
start this process by a fixed number, v,, of relaxation sweeps on the coarsest grid. 

Solution of the rotating discs problem was by either n x MG, or by 
FMG(is, n,)+n x MGi, for some is, a,,, where n represents repeated multigrid 
iterations until convergence to a prescribed tolerance is achieved. As the 
magnitudes of the variables vary greatly the convergence criterion was based on 
relative rather than absolute changes. The root-mean-square (rms) was used to 
measure the variables and the changes made to the variables across the grid, the 
iteration being terminated when rms(change)/rms(variable) was less than 1.0 x 10P4 
for all four variables. 

The relaxation method used was the extended pressure correction scheme of Van 
Doormaal and Raithby [ 123 as in Section 3. The solution of the momentum 
equations was by one alternating line Gauss-Seidel (ALGS) sweep per equation; 
the pressure correction equations were solved by the use of 3 ALGS sweeps. 

Transfer from fine to coarse grids was by full weighting restriction operators, 
following [4], which use a weighted average of all neighbouring line grid points to 
transfer the variables and defects to the coarse grid. Simpler forms of restriction 
operators are given in [l 11. For the nonuniform staggered grids and grid coarsen- 
ing as described above these were modified from the standard operators used for 
uniform grids. 

The interpolation of coarse grid corrections was by bilinear interpolation and the 
interpolation of initial approximations in the FMG process was by either bilinear 
or cubic interpolation (we make a comparison of the effect of the two in Section 5). 
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Initial solutions were as for solid body rotation, i.e., u = u = w = p’ = 0; though in 
the FMG process these will be taken on a coarser grid. The nonlinearity of the 
equations forces underrelaxation, which is implemented as in Lonsdale and Walsh 
[7]. We also use the term introduced by Gosman et al. [S] 

(17) 

added to the radial momentum equation. The inclusion of this term improves the 
handling of the coupling of the radial and tangential momentum equations and is 
discussed in detail in [7]. Provision was made for different values of c( in (17) to be 
taken on the various grids in the multigrid process; in the next section we discuss 
numerical tests to discover the best strategies for the choice of CI. 

5. NUMERICAL RESULTS 

In this section we consider the behaviour of the nonlinear multigrid algorithm 
described in Section 4 applied to the test case of Section 1 at rotation rates 52 = 1.0 
and 10.0 (i.e., rotational Reynolds numbers of approximately 2.5 x 10’ and 
2.5 x 104). For the case Q = 1.0, Chebyshev grids of sizes 17 x 17, 33 x 33, and 
65 x 65 were used as finest grids. For the Sz = 10.0 case only the 33 x 33 and 65 x 65 
grids were used as the finest. The reason for this is that the 17 x 17 grid cannot 
accurately represent the flow field for the higher rotation rate which leads to much 
narrower boundary layers. 

While “optimum” values of a in (17) may be found for each grid in the multigrid 
process, obtained by extrapolation from those found in Lonsdale and Walsh [7], 
numerical experiments have shown that it is more efficient to use a fixed value of c( 
corresponding to one of the coarse grids. For the rotation rate 52 = 1.0 we thus use 
CI = 25.0 and for the rotation rate Sz = 10.0 we use CI = 100.0, corresponding to the 
“optimum” values for the 17 x 17 grid. 

Comparisons of the two methods of solution, FMG(is, n,,) + nMG as opposed to 
nMG (see Section 4 for notation), were undertaken at both rotation rates for the 
grids given above and for a variety of number of grids and values of is, ni, and with 
both bilinear and cubic interpolation in the FMG process. The multigrid 
algorithms used were given by vb = v, = 2, v,. = 3, y = 1, 2. While the use of the 
FMG mode rather than the MG mode of the multigrid algorithm can give large 
gains in efficiency for a simple linear problem [ 1, 6, 1 l] the gains in efficiency 
obtained by the use of the FMG mode for the solution of the rotating discs 
problem, at the rotation rates Sz = 1.0, 10.0, were marginal or none. The use of 
cubic rather than bilinear interpolation in the FMG process did not significantly 
improve matters. In all cases, except for the Q = 1.0 case with finest grid 17 x 17, the 
use of the FMG mode did not reduce the number of multigrid iterations on the 
finest grid, even when the initial fine grid approximation was interpolated from a 
converged coarse grid solution. The reason for the failure of the FMG mode to 
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improve on the convergence probably lies in the coupling of the equations and on 
the fact that we are forced to use separate interpolation schemes for each of the 
variables due to the nonuniform staggered grids; for example, while continuity may 
be satisfied on the coarse grid the interpolations may lead to line grid variables 
which are far from satisfying continuity on the line grid. 

We thus take as our solution procedure the repeated multigrid iterations starting 
on the finest grid. 

In giving the results we use two estimates of the computational costs in order to 
reflect the two situations of restricted or unrestricted storage (see Lonsdale [S]). 
The work units are based on the number of arithmetic operations per point 
required by one double sweep of the ALGS algorithm calculated assuming 
unrestricted storage (the work units for all operations in the algorithm are given in 
Lonsdale ES]). The CPU times give a measure of the computational cost when 
storage is limited. 

Table I gives the best performance of the method for the a = 1.0 case, together 
with the value of the underrelaxation parameter for the pressure correction, /I, and 
the number of grids used. In all cases the parameters of the algorithm were: y = 1, 
Vb = v, = 2, v,. = 3. 

Table I shows the type of behaviour that we aim for in using a multigrid 
algorithm. 

If N is the number of points in the finest grid then the work required to obtain 
convergence is not far from U(N) (recall that the work units for each grid are based 
on the number of operations per point for that grid). This shows up very clearly 
when comparing the nonlinear multigrid algorithm with the best of the pressure 
correction methods of Lonsdale and Walsh [7], the extended method of Van 
Doormaal and Raithby, with and without the use of a linear multigrid solver for 
the pressure correction. Table II gives a comparison of the two methods for the 
B = 1.0 case, where we use the following abbreviation: 

pc-3 ALGS - Van Doormaal and Raithby’s extended pressure correction 
method using 3 ALGS sweeps for the pressure correction; 

pc-MG -the extended pressure correction method using a linear multi- 
grid solver; 

NMG - nonlinear multigrid algorithm. 

TABLE I 

Performance of the Nonlinear Multigrid Algorithm with .Q = 1.0 

Finest grid Number of gridsused p 

17x 17 3 1.0 
33 x 33 3 0.7 
65 x 65 5 0.4 

Approximate work 
units per point 

720 
810 

1190 

CPU s (CDC 176) 

6.2 
27.4 

179.4 
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TABLE II 

Comparison of the Extended Pressure Correction Method with 
the Nonlinear Multigrid Algorithm with Q = 1.0 

Finest grid Method 
Approximate work 

units per point CPU s (CDC 176) 

17 x 17 pc-3 ALGS 1200 11.3 
pc-MG 1010 9.4 
NMG 720 6.2 

33 x 33 pc-3 ALGS 2940 112.5 
pc-MG 2160 78.0 
NMG 810 27.4 

65 x 65 pc-3 ALGS 
pc-MG 
NMG 

> .7380 > 1261.8 
4350 724.8 
1190 179.4 

The “>” signs in the pc-3 ALGS results for the 65 x 65 grid are due to the fact that 
convergence had not quite been achieved. 

Table II shows a large gain in efficiency in using the nonlinear multigrid 
algorithm-a gain in efficiency which increases as the grid is refined-giving savings 
for the 65 x 65 grid of over 72% when compared to pc-MG and over 83% when 
compared to pc-3 ALGS. 

The nonlinear multigrid algorithm was then used for the rotation rate .Q = 10.0. 
As we have mentioned previously, this problem involves much thinner boundary 
layers than the Q = 1.0 case and so we do not use the 17 x 17 grid as the finest grid 
of a multigrid procedure. In solving the Sz = 10.0 case the work required to obtain 
convergence is greatly increased from that required for the Q = 1.0 case. The con- 
vergence history at the two rotation rates for the 65 x 65 grid is illustrated in Figs. 1 
and 2. Figure 1 clearly shows that the convergence rate for the axial momentum 
equation is unaltered as Sz is increased, while Fig. 2 shows that for the tangential 
momentum equation the convergence rate alters with 52. The reason for this is that 
the axial velocity is affected by the increased rotation rate far less than the radial 
and tangential velocities (the radial momentum equation convergence history being 
similar to that of the tangential momentum equation shown in Fig. 2). From Fig. 2 
we can see that the use of the zero initial approximations gives a much larger initial 
defect which together with some degradation in the convergence rate explains the 
increased work to obtain convergence for the !J = 10.0 case. 

Table III gives the best performance of the method for the Q = 10.0 case together 
with the values of /I and the number of grids used. For the 65 x 65 grid we use mul- 
tigrid parameters: y = 1, vb= v,=2, v,.= 3; however, for the 33 x 33 grid it was 
found to be slightly more efficient to use y = 1, vb = v, = 5, v,. = 10. 

While the work units and CPU times are increased from those in Table II we 
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FIG. 1. Convergence history for the axial momentum equation, 65 x 65 grid; rotation rate Q = 1.0 
( + ); 52 = 10.0 ( x ). 
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0 2 4 6 8 10 12 14 16 18 20 22 24 

WORK UNITS 

FIG. 2. Convergence history for the tangential momentum equation, 65 x 65 grid (same rotation 
rates as Fig. 1). 
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TABLE III 

Performance of the Nonlinear Multigrid Algorithm with Q = 10.0 

Finest grid Number of grids used 
Approximate work 

units per point CPU s (CDC 176) 

33 x 33 3 0.5 2330 83.5 
65 x 65 4 0.4 2250 337.9 

note that we still have the same order of improvement over the pc method; for 
example, with the 33 x 33 grid using pc-MG we get convergence in approximately 
5780 work units, 214.5 s CPU time. We also note that we again get convergence in 
an amount of work proportional to the number of grid points. 

Convergence was reached at the higher rotation rates of 52 = 30.0, 40.0, and 50.0 
(coreresponding to rotational Reynolds numbers of approximately 7.4 x 104, 
1.0 x 105, and 1.25 x 105) but the increase in computing time prevented extensive 
numerical testing. 

6. CONCLUSIONS 

In Section 3 the extended pressure correction scheme of Van Doormaal and 
Raithby [12] was analysed as a smoother for the Navier-Stokes and continuity 
equations and advantages in using the pressure correction scheme were discussed. 
The scheme was successfully implemented as the smoother of a nonlinear multigrid 
algorithm for the solution of the problem of laminar, source-sink flow between 
corotating discs, giving much improved convergence rates in comparison with what 
is viewed to be an efficient one-grid method (which included the use of a linear 
multigrid algorithm in part of the solution process). The convergence in a 
computational cost proportional to the number of grid points was achieved. While 
the method shows some deterioration of convergence rate with increasing Reynolds 
number, the level of improvement over the one-grid method remains the same. 

An important feature concerning the possible implementation of a major produc- 
tion code is the use of a pressure correction technique using nonuniform grids; so 
that a nonlinear multigrid method could be constructed around an existing code, 
providing the geometry is not too complicated. 

The algorithm described is applicable to laminar flows, it remains to be seen 
whether or not the ideas can be suitably modified to provide an algorithm for tur- 
bulent flow calculations. In future work it is intended to consider extensions of the 
algorithm described here and also to make a comparison between this and various 
other multigrid schemes which have been put forward for the solution of the 
Navier-Stokes equations [2,4, 13, 143. 
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